Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1299-1369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701305

RESUMO

Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.

2.
Org Biomol Chem ; 19(12): 2753-2766, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33687423

RESUMO

The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series. Patch clamp measurements indicate that the presence of the thioether function (compounds 7 and 17a) produces strong activators of SK3 channels, whereas the introduction of a sulfoxide or a sulfone function at the same place produces amphiphiles devoid of an effect on SK3 channels. Compounds 7 and 17a are the first amphiphilic compounds featuring strong activation of SK3 channels (close to 200% activation). The cytosolic calcium concentration determined from fluorescence at 3 different times for compound 7b (13 min, 1 h, 24 h) revealed that the effect is different suggesting that the compound could be metabolized over time. This compound could be used as a strong SK3 activator for a short time. The capacity of 7b to activate SK3 was then used to induce vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. For the first time, we report that an amphiphilic compound can affect the endothelium dependent vasorelaxation.


Assuntos
Éteres/farmacologia , Glicolipídeos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Compostos de Sulfidrila/farmacologia , Tensoativos/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Éteres/química , Glicolipídeos/química , Humanos , Masculino , Ratos , Ratos Wistar , Compostos de Sulfidrila/química , Tensoativos/síntese química , Tensoativos/química , Vasodilatação/efeitos dos fármacos
3.
Eur J Med Chem ; 209: 112894, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049604

RESUMO

We report the synthesis of three bioactive pyrene-based fluorescent analogues of Ohmline which is the most efficient and selective inhibitor of SK3 ion channel. The interaction of these Ohmline-pyrene (OP1-3) with liposomes of different composition reveals that only OP2 and OP3 are readily integrated into liposomes. Fluorescence measurements indicate that, depending on their concentration, OP2 and OP3 exist either as monomer or as a mixture of monomer and excimers within the liposome bilayer. Among the three Ohmline Pyrene compounds (OP1-3) only OP2 is able to reduce SK3 currents and is the first efficient fluorescent modulator of SK3 channel as revealed by patch clamp measurements (- 71.3 ± 13.3% at 10 µM) and by its inhibition of SK3-dependent cancer cell migration at (-32.5% ± 4.8% at 1 µM). We also report the first fluorescence study on living breast cancer cells (MDA-MB-231) showing that OP2 is rapidly integrated in bio-membranes followed by cell internalization.


Assuntos
Glicolipídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Pirenos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Glicolipídeos/química , Células HEK293 , Humanos , Bloqueadores dos Canais de Potássio/química , Pirenos/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...